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We review the simplified classical Fermi acceleration mechanism and construct 
a quantum counterpart b~, imposing time-dependent boundary conditions on 
solutions of the "free" Schr6dinger equation at the unit interval. We find similiar 
dynamical features in the sense that limiting KAM curves, respectively purely 
singular quasienergy spectrum, exist(s) for sufficiently smooth "wall oscillations" 
(typically of ~'- type). In addition, we investigate quantum analogs to local 
approximations of the Fermi map both in its quasiperiodic and irregular phase 
space regions. In particular, we find pure point q.e. spectrum in the former case 
and conjecture that "random boundary conditions" are necessary to model a 
quantum analog to the chaotic regime of the classical accelerator. 

KEY W O R D S :  Schr6dinger equation with time-periodic boundary condi- 
tions; absence of absolutely continuous quasienergy spectrum; correspondence 
to analogous (chaotic) classical model. 

1. THE CLASSICAL FERMI M A P  

The Fermi  acceleration model  is an  example  of a H a m i l t o n i a n  system that  
can  be represented by an  area-preserv ing  m a p p i n g  and  which i l lustrates the 
na tu re  of s tochast ic  t rajectories  in systems with two degrees of freedom. 
The  m a p p i n g  results f rom an  idea l iza t ion  of the o n e - d i m e n s i o n a l  m o t i o n  of 
a bal l  b o u n c i n g  be tween a fixed an d  a per iodical ly  osci l la t ing wail. (The 
or ig ina l  mode l  goes back to Fermi ,  tll who sought  an  exp l ana t i on  for the 
accelera t ion of cosmic rays in the c o m b i n e d  e a r t h - - m o o n  grav i ta t iona l  

field. ) 
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The mathematical description of the accelerator best starts in the 
pointwise rest frame of the oscillating plate, There we observe 

~ = p ~  with momentum p = ~ / 2 ,  O<<.q<~a(t) (1) 

together with the reflection condition for the nth impact: b~i)= ~(f) 
: t n  - -  t ' / n  " 

Under the canonical transformation c2) 

(q, p)  ~ (81 = q/a(t) ,  fi = p .  a( t ) )  (2) 

the Hamilton function (1) becomes 

~ ( t )  =p2/aZ(t )  - ( ( ( a ) ( t ) p - q  

or. after introducing the auxiliary variable s d ( t ) = i : = ~ ' o d r a ( T )  -z ,  we 
obtain from (1) 

.~(i) =~2 _ ( a a ) [ d - ' ( i ) ] / ~ .  4 (3) 

Accordingly, the elastic impact condition to (1) is recovered as 

~ " ) -  (za = - ~ f )  + ha (4) 

(here o indicates the derivative with respect to i). 
The main technical difficulty in solving problems (1), respectively 

(3)-(4), is the dependence of the flight times between the nth and (n + 1)th 
collisions of the ball and the oscillating plate from the value of the 
phase of the moving wall at the nth impact. Therefore Ulam ~3) and later 
Lichtenberg and Lieberman ~4) proposed a simplified version of the Fermi 
accelerator in which the walls are kept at constant distance from the very 
beginning; however, one of the plates imparts energy to the ball via some 
nontrivial relation similiar to (4). Since then, it has been confirmed in 
several numerical studies ~4-6) that the simplified version approximates the 
full model sufficiently well in a certain range of physical parameters. (For 
instance, the combination "fast" particle versus "slow" wall works.) 

In terms o f  the system (3)-(4), the simplification consists in 
disregarding the drift term (r in (3) while keeping the 
inelastic transfer (4). Expressed as a dynamical system, the simplif ied Fermi  
accelerator is therefore described by the following difference equations (4" s): 

u.  + L = tu.  - ( dq~/dqk )( qk,,)l 
(5) 

q~.+, = ~b,, + 2 dw(u,,+ l ) - '  

Here (u.. ~b.)~R + x S 1 are conjugate action-angle variables right before 
the n th impact. In particular, ~b = cot is the phase of the wall oscillation. 
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u = 0/2o9y corresponds to the normalized particle velocity, with 0 := dq/dt 
and ~, the amplitude of the wall oscillation. The latter is described by 
a( t )= l+y~(oo t ) ,  q~ being 2n-periodic, with ~ m a x = - - ~ m i , = l .  Thus, 
2d(u,,+~) -~ is the time between the nth and (n+  1)th collisions between 
bouncing ball and "oscillating" table with d =  1 denoting the distance 
between the plates. Given (5) and a sufficiently powerful computer, millions 
of iterations ( ~  collisions) can be performed for various initial conditions. 

Typical surface-of-section plots for various choices of ~ can be found 
in refs. 4--7. Generically, the (u, ~b) space is divided into three regions: (i) A 
region of predominantly irregular motion for small values of u, in which all 
primary periodic solutions to (5) appear to be unstable. See below for more 
details. (ii) An interval of intermediate u values, where islands of stability 
are embedded in the chaotic sea. (iii) High u values, for which most of the 
trajectories are regular. 

As pointed out in refs. 5 and 7, there is the following important conse- 
quence of the KAM theorem about the existence of invariant limiting 
curves: Based on numerical studies it has been conjectured in ref 5 that for 
all a~Cgz(S I) there exists a limiting K A M  curve in the (u, ~) surface-of- 
section which restricts the energy gain of  the bouncing particle. (This feature 
will find its quantum analog in Section 2.) 

As the dynamics in the vicinity of period-one points of (5) has 
significance for the quantum model discussed in Section 2, we briefly 
describe the linear stability of the simplified accelerator following ref. 7, 
Section 4.lb. For definiteness we choose 3 = sin ~b from now on. Then the 
mapping (5) has period-one fixed points situated at ~b=n/2, respectively 
~b = 37r/2, and for the former 

2doo/uo=(2m+ l/2)n, m6~_ (6) 

Putting u,, = Uo + zlu,, and introducing the angle 0,, = ~b,, - n, - n  < 0,, < n, 
we obtain from (5) and (6) the celebrated standard map (see refs. 5, 7, and 
8 for instance): 

~,,+ ~ = ~,, + Kcos 0,, 

0 , , + l  = 0,, + 2 ~ , , +  1 
(7) 

with coupling parameter K =  co/u o, (~, 0) e R x S~, and ~,, := ~ ( n - ) .  
Henceforth, the kick period is normalized to unity and it replaces the time 
intervals between the nth and (n + l)th impacts of the ball at the (moving) 
plate. 

The standard map has been extensively studied (see refs. 7 and 8 and 
references therein). One of its peculiarities is the 2n-periodicity of both 
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angle and action variables. For K values small enough the (~, O) surface- 
of-section is reminiscent of a gravitational pendulum in discrete time. 
Increasing K leads to an overlap of the separatrices around adjacent 
primary resonance islands. Once this happens, certain orbits are no longer 
trapped inside the islands, a feature commonly called transition to chaos. 

Remark that the particular choice of the period-one point (Uo, ~/2) 
influences the actual value of K in (7). Thus, decreasing particle velocity 
increases the coupling in the standard map. As described in refs. 5 and 7, 
there is a critical value us such that all primary fixed points of (5) with 
Uo < u,. are unstable. Hence, the approximation of the simplified Fermi map 
(5) in form of the standard map (7) loses its significance for Uo < us. 

An appropriate tool for the description of the Uo < us portion of phase 
space is a random phase approximation for the phase coordinate ~b: Rather 
than discussing the surface-of-section map (5), Lichtenberg and Lieberman 
investigated the "time" evolution of the distribution function ~(u, n) in 
terms of a Markov process in u: 

~(u, n + An)= f d(Au) ~ ( u -  Au, n) "lU~(u- Au, n, Au, An) (8) 

where "#~,(u, n, Au, An) is the transition probability for a change in action 
after the time An for an ensemble of phase points having action u at time 
n. (Technical) details such as the employment of a Fokker-Planck-type 
equation and the validity of the random phase approximation can be found 
in refs. 4, 5, and 7. We only remark that the ergodic hypothesis appears to 
be satisfied, i.e., when computed over sufficiently long times, (8) leads to a 
uniform density distribution in the corresponding region of phase space. 

2. Q U A N T I Z A T I O N  

The aim of the first part of this section is the construction of a suitable 
quantum analog to the simplified classical accelerator. In the second part 
we discuss dynamical features like quasienergy spectrum, etc., of the 
obtained quantum model and compare the results to the classical counter- 
part. In order to introduce a simplified quantum Fermi accelerator, we 
return to the very beginning and define a formal Schr6dinger equation 
iO,(~=-O].(~ on the family of intervals J ( a ) =  {(0, a(t)},~[o..~- 1. {"For- 
mal," since the LHS involves (~(t~)-q~(t2) with q~(ti)eL2([O,a(ti)],dx), 
i =  1,2, and in general a(tl)~a(t2). } The scaling (x, t ) ~ ( y  :=x/a(t), 
t ' =  t) yields the transformed equation on the unit interval as 

ia,~ = { - [-a(t)] -2 0.2. + i(b/a)(t)[yay + 1/2] } t~ (9) 
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After using again d ( t ) =  i :=S~ dr a(z) -2 as an auxiliary time, we see that 
the periodic family 

/-t(i) = - c~. + i( ,~a)[d - t(i)] [xO:, + 1/23 (10) 

of Hamiltonians on h := L2( [0, 1 ], dx) emerges. Hence, by 
( - i0 , . ,  x)v-. (,6, ~), this formula yields the exact analog to (3). Integration 
by parts shows that a symmetric family {/~(i)} is obtained with 

~.,.(i, x = 1 ) =  { a ( i )  + i ( a a ) [ d - ' ( i ) ] / 2  } ~,(i ,  x = 1) 

~,.,.(i, x = 0)  = / ~ ( i )  ~ ( i ,  x = 0)  
(11) 

with numbers - o e  <c~(/), [3(i)~ oe. Note that merely for ~(i)=[t(i)= oo 
for all i, i.e., Dirichlet conditions at both x = 0 and x =  1, (10) is a self- 
adjoint Laplacian plus on its domain symmetric perturbation. In addition, 
only the Dirichlet condition is dilation-invariant. Thus, choosing the 
Dirichlet Laplacian in (10) implies Dirichlet conditions on J ( a )  as well. 

However, as our aim is the construction of a quantum counterpart to 
the simplified Fermi map (5), we now disregard the drift term in (10), 
which in turn requires the neglect of the factor i(im)[sr in (11). 
Henceforth, the quantum analog to the energy transfer between the 
classical ball and the (hypothetically) oscillating plate has to be formulated 
in terms of the logarithmic derivatives resulting from (11 ). 

Remark that this procedure disqualifies the Dirichlet Laplacian, since 
in that case it leads to an "oversimplified model" at the unit interval. 
Nevertheless, there are several studies of (9) under Dirichlet conditions at 
both x = 0  and x =  1.19 11) 

In view of these features, we therefore introduce the simplified quantum 
Fermi accelerator as the following arrangement: 

D e f i n i t i o n .  A formal Schr6dinger equation - iO,~ = O~.(a(t), ~(t))qJ 
is defined on (0, 1 ) and the set of solutions obeys the boundary conditions 
@x(t,x=O)=fl(t).~Ox(t,x=O), ~ . , . ( t ,x=l)=oc( t ) .~k( t ,x=l)  with ~,/~ 
sufficiently smooth; see below. [Here -O~.(oc(t),fl(t)) is the Laplacian 
defined on functions obeying the stated boundary conditions.] 

What are physically relevant choices of 0c and /~? Intuitively, both 
functions should be related to the (hypothetical) wall motions. As the 
"wall" at x= .0  is at rest, we therefore adopt /~(t)=0 for all t s [0, Y-], 
whereas the detailed structure of e(t) is left open for the time being; see 
Conjecture 4. (The usefulness of the Neumann condition in relation to a 
classical limit of certain time-dependent Schr6dinger operators at the unit 
interval shows up in ref. 12 as well.) 
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We defer the proof of existence and uniqueness of the propagator 
"~,(t, s) solving -ia,~k = &',(~(t), [3(t))~b to Theorem 3 and turn directly to 
the spectral properties of its one-period evolution ~ 0). Based on 
recent work by Howland tj3~ and Nenciu, c~a) it is a straightforward task to 
determine the absence of a~,(~/Z~(Y, 0)). 

T h e o r e m  1. Let ~cg-'((0,~--)) with ~ ( t = 0 ) = ~ ( t = ~ - - ) = 0 .  Then 
q/,(3-, 0) is purely singular. 

ProoL The proof of the claim follows entirely from Nenciu's 
article ~4~ once the analog to his estimate (2) is established. In order to do 
this, remark that the general solution to 

--O~.(ct( t ) , f l=O)~ .... ( t )=E, , .~( t )~b .... (t), t ~ [ 0 , 5 " ]  

reads 

~b., ~(t, x ) =  c., . ( t )  Cos[E...(t) '/2 x]  

with 

c , , , , ( t )=[ lcos[E , , . , ( t )m  x]ll/~ ~ , E , . ~ ( t ) = ( n n ) 2  + 2~( t )+(9(n  - I )  

for n ~ ~ sufficiently large 

(see ref. 15, p. 2314). Hence, the spectral projection P,,.~(t) of 
-c~2(c~(t), f l=0 )  corresponding to E , , , ( t ) i s  given by 

P,,, ~(t) = c,]. ~(t)(cos [E,,, ~(t) l/'-. ] , .  )/, cos [E,,, ~(t) I/2" ] 

and a short calculation reveals that for n E I~ sufficiently large there is an 
n-uniform constant ~' such that 

[I (dP,. ,/dt)(t)[[ a~m <~ cgn - I 

Here 9~(h) denotes the space of bounded, everywhere defined operators 
on h. 

The remainder of the proof is identical to the corresponding part of 
ref. 14. For convenience, we recall the main idea, which consists of a two- 
step iterative adiabatic approximation to the Floquet operator, which has 
a pure point spectrum. As the difference is shown to be trace-class, the 
Birman-Krein theorem It6) implies the absence of a,c(q/~(~--, 0)). 

To be more detailed, denote by B ( t ) : = i Z , E ~  P , , ( t ) (dP, /d t ) ( t )  the 
self-adjoint operator on h obeying 

i (dP, , /dt)( t)  = [P,,(t), B(t)] 
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with I-A, B] : = A B - B A .  All claims about the operators involved are 
proven in ref. 14; we also skip the 0t (sub)index. 

In addition, define H ~ ( t ) : = - 8 ~ + B ( t )  and corresponding spectral 
projection Pl.,,(t) as well as the self-adjoint trace class operator B~(t): 

B,(t) = i ~ P,.,,(t){i(dP~.,,/dO(t) + [O], P~.,,(t)] } 

Finally, let 'r s) be determined by 

- i [d 'U( . , s ) /d t ] ( t )=[O] .+B, ( t ) ]Y- ( t , s ) ,  "U(s, s) = 0 

and consider the Moeller operator corresponding to the pair -c3~ and 
Hl(t  ), i.e., 

(2(t, s) := "//(t, s)* q/,(t, s) 

It turns out that g2( t , s ) -0  is trace-class and the Floquet operator 
~l/,(Y-, 0) can be written as 

% ( y ,  o)= ~ ( y ,  0)E0 + o ( ~ ,  0 ) -  0] 

As U(~--, 0) is pure point due to Pt.,,(~--)= PI.,,(0) being rank one and 
[~'(Y-, 0), PI.,,(Y')] =0,  the standard argument on trace-class differences 
of unitary operators ~6) finishes the proof. II 

Remark. The content of Theorem 1 is very encouraging, as it is the 
general consensus that aac(q/,(~--, 0 ) )=  ~ implies a limited energy gain of 
the quantum system in question (171 [i.e., a best some diffusive increase in 
energy due to G,.(q/=(~--, 0)):~ ~ might occur]. 

Henceforth, quantum and classical dynamics seem to share the same 
characteristics with respect to global stability. To determine the absence of 
any global diffusion in the quantum model, however, more detailed studies 
are necessary. 

To this end, we introduce the extended Hilbert space 
:=L2([0,  J - ] ,  dt)| 1], dx) fitted with the canonical scalar 

product. Note that 3r is the quantum analog to the extended phase space 
in classical mechanics. So-called Floquet Hamiltonians .K= -=i8,+ H(t) 
defined on ~r with {H(t)} a periodic family, represent the particular 
quantum system plus external perturbation; see ref. 18, for instance. 

Hence, we shall be interested in self-adjoint realizations on Y?' of 

Jt"(ct, fl = O) = - i8/3t - -  02/Ox 2 dr- ~(t) 6(x -- 1 ) (12) 
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where the Dh'ac delta distribution formally indicates the nontrivial 
logarithmic derivative at x = 1 of ~b ~ -@(- 0.-',.(~(t),/~= 0)). 

To furnish (12) with a rigorous meaning, we introduce several 
operators on ,,uf: 

(i) "Free" oscillations between two fixed walls are sketched on J :  by 
the self-adjoint operator Ko := Ko 

/~o=O|  + O| (13) 

where the self-adjoint D := -iO/Ot is defined on f -pe r iod ic  functions and 
- - A N  is the Neumann Laplacian. 

(ii) Time-dependent boundary conditions enter via the Floquet 
Hamiitonian k=, which is given by 

R ~ = O |  e dtO~.(~(t),[3=O) 
[o. J ]  (14) 

~(/~,) = { ~u~ ,,~: /~  ~ ~ with ~ ( 0 , .  ) = ~ u ( y - , .  ), ~ u ( - ,  x = 0)  = 0 

and ~ , ( . , x = l ) = ~ ( . ) ~ u ( . , x = l ) a . e . }  

Thus, from a formal point of view, both operators act as the partial 
derivative k : = - i O / 0 t - 0 2 / 0 x  2, i.e., we have to deal with different self- 
adjoint extensions of a common (maximal) symmetric operator ~", which 
is defined as 

_@(fit")= { f e ~ :  Of/OteJg, 632f/Ox2E,k~ with 

f (0 , - )  = f ( J - , - ) ,  f , ( . ,  x = 0 ) = 0  

and supp f ( .  ) c [0, mr m:< 1 a.e. } 

:,~f = [-iO/Ot-OZ/OxZ]f Yf e-@(fi{) 

P r o p o s i t i o n 2 .  The closed symmetric operator /~=9f?** has 
deficiency indices equal to infinity and the defect space k e r ( / ~ * - z )  is the 
closed linear hull n (oW(z)) of the set 

5P(z) := {r t, x) = cj(z) exp(2ni/t/~-) cos[(z - 2nj/Y-) ~/z x] } 

with cj(z):= [Iq~j(z)ll~r'. 

We omit the proof of Proposition 2 since it is identical to the proof of 
Lemma 2.1 of ref. 19. Proposition 2 allows the determination of the self- 
adjoint Floquet Hamiltonian corresponding to the simplified quantum 
Fermi accelerator. 
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Theorem 3. Let c te~]((0, ,~))  such that c t ( t=0)=ct( t= ,Y-)=0.  
Then there is a self-adjoint Floquet Hamiltonian K(ct) given by the 
operator closure of ks defined in (14). Furthermore, 

{exp[iy-K(ct)]~u}(,Y~)=J//~(d-,O) ~(0) V~e ~( /~)  

Proof. From Proposition 2 we infer K * c  J#*. Yet, integration by 
parts assures us that n(,9~ is not contained in ~(/~'*). Therefore the 
operator k ,  has deficiency indices (0,0). Owing to cte~'~((0, J~)), the 
boundary conditions are compatible. 

Hence, K(0t )  generates the one-parameter unitary group 
{ e x p [ i t K ( ~ ) ] } ~  and the Trotter product formula applies (ref. 20, for 
instance): 

= s-lim Iexp[i(r/n) D |  0] exp[itK(ct)] 
t t ~  

xe .[ o . j }  - dt c?i(ct(t),/~ = 0) (15) 
~[o..~" ] 

Using the shift properties of {exp(irD)} and 

~ J exp - i t  dr O~.(~(t),//=0) ~P(i)=exp[-irO~.(c~(t), B=O)] ~P(i) 
[o, .~- ] 

we can explicitly compute the nth term on the RHS of (15). For instance, 
with n-- 1 we obtain 

J exp(i tD|  - i t  dtO'-.,.(ct(t),fl=O) ~P(t) 
[ o, .~- ] 

= ~ e x p [ i t E , , , ( t - r ) ] ( ~ b , . ~ ( t - z ) ,  ~u( t - - t ) )h~bk. , ( t - - t )  
k e r n  

with Ek.,(t) and ~,..,(t) defined in Theorem l. Iteration of (15) for 
arbitrary n e I~ shows that in every step the object of evolution ~u appears 
as W(t -  t). Hence, from the definition of the norm on ~ and (15) we infer 
that there exists a unitary transformation 'l/,(t, t - r )  on h =LZ([0, !], dx). 
Finally, strong differentiation on @(/~,) proves that ~k',(t, t - ~ )  solves 

-i8,~=8~.(~(t), f l=O)~ II 

Henceforth, there indeed exists a spectral equivalence between K(~) 
and 4~/~(Y -, 0). In particular, 

exp(i,Y--2) ~.  = ~//,(,Y~, 0) q,,~. 
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for 2~.~pp(K(o~)) with corresponding eigenfunction(s) ~b~. Theorem 3 
permits the investigation of a(K(ot)) instead of a(q/~(~--, 0)). However, to 
relate K(~) to the classical simplified accelerator, the "explicit" form of c~ 
has to be determined! 

As we are unaware of any physical argument providing a detailed 
knowledge of ~, we shall use the approximations to the classical map (5) 
discussed in Section 1 as a guide. 

In particular, we note that the quantization of the standard map is 
unambiguous. In ref. 21 we introduce a quantum standard map and relate 
a certain "linearization" of it to the classical map linearized around its 
period-one fixed points. The physical idea behind this procedure is Ehren- 
fest's theorem, ~'-~ which connects expectations of linear quantum systems 
to the classical dynamics. (For a related investigation see ref. 23.) Hence- 
forth, using the deviation via the (quantum) standard map, we obtain a 
quantum model which corresponds to the classical Fermi map in vicinities 
of its (stable) period-one fixed points. 

To be more detailed, remark that (7) basically is a mapping in 
( - ex te rna l  energy, time) variables (the minus sign refers to Newton's third 
law: actio est reactio). In the extended Hilbert space approach the external 
energy E is represented by iO/Ot o n  L2([O, J-I, dt) and in case of the Fermi 
problem the operator - D  is appropriate (see ref. 19 for the form of the 
external energy operator in the kicked rotor model). 

Therefore, quantization of (7) yields the change in the external energy 
due to the periodic 3-kick-like interactions with the "quantum ball" as 

D+ = D_ - x[h(cot)] _ (16) 

with K ~ R related to K from (7) and the plus and minus signs refer to the 
auxiliary time r measuring the number of interactionsJ 2j~ The brackets 
around h express the fact that the "time operator" conjugate to - D  has to 
be some ~--periodic multiplication. {We refer to ref. 21 for details on the 
r evolution of [~(ogt)]_.} On the other hand, there is always global 
conservation of energy: 

d E ~ d r  = - O H / ~ t  = 0{c~](~(t) ,  # = 0 ) } / ~ t  (17) 

Thus, combining the quantization of  (7), i.e., (16) as one part of it, and 
(17), we conclude that by adopting Cto(t ) ~- q~(cot) with ~ deft'ned in (5), we 
obtain a quantum counterpart to the simplified classical Fermi accelerator #1 
the interval of  intermediate u values, i.e., in the region of  local stability where 
the standard map (7) is a meaningful approximation to the full mapping (5). 

The actual study of spectral properties of K(~o) is rather involved. ~-'4~ 
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We therefore present the final result for the special case of Cto(X, t )=  
k sin 2rrt/9-- as a proposition without proof. Mathematical details can be 
found in ref. 19, where an analogous machinery is developed to investigate 
the dynamics of the kicked rotor. 

Proposition 4. Define K(~to) as in Theorem 3 with cto(x, t ) =  
xsin2zrt/Y-, I~leR +, sufficiently small and J - = 2 / n v ,  v typically 
Diophantine. Then a(K(oto))= trpp(K(~o)) and 

r ) c { jvx" + )'~,( + K)}~i,  ,,,e z ,, 

Here y,,(x) is the root of the equation ~, ,(h ')=-Kctg~,, ,(x) and 
7~,( - K) = (nx)2 +__ 2x + d~(n - l ) for n e 1~ sufficiently large. 

The content of Proposition 4 highlights the relationship between the 
quasienergy eigenvalues and the period-one fixed points of (5), since the 
roots ?~,(+K) correspond to c~ff --- + x. Hence, both sets are determined by 
the extremal values of the external perturbation. In physical terms, both the 
quantum eigenvalues and the period-one fixed points are related to the 
(hypothetical) turning points of the wall oscillation. (A similar observation 
is made in the kicked rotor model. 1~9' 2~1) Thus, for small enough coupling 
(and sufficiently short periods in timeC2t)), the quantum system defined 
above (_~"partially linearized quantum Fermi accelerator") and the classical 
map (7) share similiar dynamics. 

However, as there are technical limitations on the method of proof to 
be applied to Proposition 4, we are unable to follow the route to chaos in 
the actual accelerator, i.e., increase the coupling x to move toward the 
stochastic sea; cf. Section 1. Yet, Proposition 4 indicates that the choice of 
Cto is reasonable in a limited approximation of the simplified Fermi 
accelerator problem. 

Finally, what about a quantum analog to the stochastic portion of the 
classical dynamics? Again we propose to follow the classical approxima- 
tion: Equation (8) provides a probabilistic account of the change in 
external energy due to the ball-oscillating wall interaction. As relation (17) 
is still valid, we therefore propose that the forcing function ct in (14) has to 
carry some random characteristics--presumably modeled along the classical 
situation described in (8). (After all, the external perturbation is always 
classical.) However, since the theory of random (unbounded) perturbations 
of Schr6dinger operators is not as developed as its deterministic counter- 
part, we face severe technical challenges in even thinking about quasienergy 
spectra of "operators K(ct(f2)) = D | D - d(ct(12))." 

It is known that singular spectra are unstable under certain random 

822/77/3-4-24 
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perturbations, t253 whereas on the other hand, various random Schr6dinger 
operators on the half-line R + tend to have pure point spectrum a.s. 126~ 

Thus, the existence of a singular continuous component in a(K(ct(I2))) 
cannot be excluded from the very beginning. Moreover, as seen from 
Proposition 4, the quasienergy eigenvalues of the linearized accelerator are 
related to the stable period-one points of  the classical map. Hence, in the 
absence of the latter we may indeed hope to find traces of classical chaos 
in form of a singular continuous quasienergy spectrum. 

Therefore, the following dynamical structure emerges in the simplified 
quantum Fermi accelerator model: Global stability is achieved by purely 
singular quasienergy spectrum for ct ~ c~2 and in the approximation sketched 
above we observe pure point quasienergy spectrum of the approximate 
("partially linearized") Floquet operator and that model is in correspondence 
to the intermediate phase space region of the classical accelerator. Whether 
or not the stochastic region of the latter finds its quantum equivalent in 
as,.(q/,(.Y-, 0)):~ ~3 is open to speculation. 
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